40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 10390     Entry time: Thu Aug 14 18:31:45 2014
Author: ericq 
Type: Update 
Category: LSC 
Subject: LSC Modeling Update 

 Based on the game plan, I have created a slew of updated pretty plots about our signals and loops. 

First: With measured arm losses, when do we start to see REFL DC dip? At what arm buildup powers? 

I updated my MIST model with the arm losses I've measured (Y:130ppm, X:530ppm), and some measured transmissions from the wiki, vs. the design parameters, as I used to have. Here is the DC sweep plot which is now hanging up in the control room. 

dcSweep.pdf

In this plot, I also calculated what MIST thinks the full arm power buildup will be as compared to our single arm locking, and I get something of order 200, rather than the 600 we've tossed around in discussions. Nothing else is very different in this plot from the old version; though the REFLDC dip is a little bit wider. 

Now, here are some radiation-pressure inclusive sensing transfer functions, for the anti-spring case (which in Rob's day was easier to lock for unknown reasons):

carm2TRX.pdfcarm2REFLDC.pdf

carm2REFL11.pdfdarm2AS55Q.pdf


Next: Include new AO path TFs into CM model Look at possibilities for engaging AO path 

With these TFs, and the recently measured+fit new AO TF, here are the open loop gains of the slow, digital, SqrtInv-sensed MCL CARM and fast, analog, REFLDC-sensed AO CARM loops for the region of offsets we've achieved and a little lower. The slow digital loop includes the 1k LP that we have used in the past, in addition to the normal CARM filters. I still need to figure out the right sequence of ( offset reduction / crossover frequency motion / overall gain adjustment ) that gets the coupled cavity resonance solidly within the loop bandwidth. 
 
MCLcarmLoop.pdfAOcarmLoop.pdf

 

ELOG V3.1.3-