40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Wed Jul 23 23:43:28 2014, ericq, Update, LSC, Locking efforts; Wrath of the Mode Cleaner 
    Reply  Tue Jul 29 16:41:54 2014, Koji, Update, LSC, MC servo MCservo.pdf
       Reply  Wed Jul 30 00:42:27 2014, Koji, Update, LSC, MC servo MCservo.pdf
       Reply  Wed Jul 30 22:01:24 2014, Koji, Update, LSC, MC servo 
Message ID: 10285     Entry time: Tue Jul 29 16:41:54 2014     In reply to: 10267     Reply to this: 10293   10300
Author: Koji 
Type: Update 
Category: LSC 
Subject: MC servo 

The MC openloop gains were measured with several conditions
- MC fast/PC crossover was measured to be ~30kHz.
- No feature found in the fast path above 10kHz.

=====

I have been making a circuit to test the crossover between the PZT and PC paths.
This was supposed to allow us to inject a test signal as well as the 5V necessary to offset the voltage for the HV amp.
So far this attempt was not successful although the circuit TF looked just fine. I was wondering what was wrong.

I now suspect that the noise of the circuit was too big. It has ~65nV/rtHz noise level. This corresponds to the external
disturbance of 1~2Hz/rtHz. This is ~10 times larger noise level than the freerun frequency noise.

In the control band the circuit noise is suppressed (cancelled) by the feedback loop.
This is OK when the loop is dominated by the PZT loop. However, if the loop is dominated by the PC path,
the PC path has to work for this compensation.

So what I should do is to remove the low pass filter in the FSS and move it to the downstream of the HV amp.
This way we may be able to reduce the PC path actuation as the noise of the HV amp is also reduced by the LPF.

=====

For the meantime, I used another approach to characterize the MC crossover. I could manage to lock the MC without the PC path.
The openloop was measured with and without the PC path in this low gain setup. In fact the loop was oscillating at 6kHz
due to the low phase margin. Nevertherless, this comparison can let us find where the crossover. The loop gain was also
measured with the nominal condition.

<<Measuerement condition>>

No PC
MC IN1 Gain: +19dB
VCO Gain: +3dB
Boosts: No boost / No super boost

FSS Common Gain: +13dB
Fast Path Gain: +21.5dB
The PC path disconnected.
(Note that the loop was almost oscillating and the apparent gain may look lower than it should have been)

WIth PC
MC IN1 Gain: +19dB
VCO Gain: +3dB
Boosts: No boost / No super boost

FSS Common Gain: +13dB
Fast Path Gain: +21.5dB
The PC path connected.

Nominal
MC IN1 Gain: +19dB
VCO Gain: +15dB
Boosts: Boost On / Super boost 2

FSS Common Gain: +13dB
Fast Path Gain: +21.5dB
The PC path connected.

 

Attachment 1: MCservo.pdf  89 kB  | Hide | Hide all
MCservo.pdf
ELOG V3.1.3-