Purpose
We wanted to improve the coupling into the fibers, because it's very rarely good enough to take measurements with, as the beam is obscured by random noise.
Additionally, we want to add some things to the current setup in order to better measure Polarization Extinction Ratio.
What Was Done
After flailing for several hours, Koji helped me couple the NPRO light into the fiber, using the fiber illuminator for alignment. The coupled optical power immediately jumped from 0-1uW to 5.6mW (around 11% coupling).
Q and I discussed the setup for measuring PER. In addition to the current setup, we added a half wave plate to control the angle of the polarization, in addition to the existing quarter wave plate, which corrects the beam for ellipticity.

Once everything was coupled, I started minimizing S-Polarization coming out of the first polarizing beam splitter, and maximizing the P-Polarization entering the fibers.
I did this by first varying the Quarter Wave plate to eliminate as much S Polarization as possible, and then, maintaining a constant differential in angle between QWP and HWP, I rotated them both to maximize power coupled into the fibers.
I measured 0.2 mW of S-Polarization, and 54.3 mW of P-Polarization.
At this point, a locking effort started, and I had to leave the 40m.
Moving Forward
Tomorrow, I would like to finish the setup of the PER measurement design. That is to say, add a collimator to the other end of the fiber, and align it with the second PBS.
And, of course, take a measurement of the Polarization Extinction Ratio of the fiber.
To eventually be implemented in Frequency Offset Locking.
|