40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 10204     Entry time: Tue Jul 15 18:26:40 2014
Author: Harry 
Type: Update 
Category: General 
Subject: Beam Waist, Telescope, and Fiber Coupling 

 Goal

To design an optical setup (telescope / lens) to couple 1064nm NPRO light into PANDA PM980 fibers in order to characterize the fibers for further use in the frequency offset locking setup.

Design

 fiberTestingSetup.png

Calculations

 The beam waist of the NPRO was determined as 233um 6cm in front of the NPRO. This was used as the seed waist in ALM.

The numerical aperture of the fiber was given as 0.12, which allowed me to calculate the maximum angle of light it would accept, with respect to the optical axis, as NA = sin(theta) where theta is that angle.

Given that the coupler has a focal length of 2mm, I used the formula r = f * tan(theta), to yield a "target waist" for efficient coupling into the fiber. This ended up being 241.7um.

Since there was not a huge difference between the natural beam width of the NPRO and our target waist, I had no need for multiple lenses.

I used 230um as a target waist for a la mode, to leave myself some room for error while coupling. This process gave me a beam profile with a lens (f=0.25m), and a target waist of 231um, located 38.60cm from the coupling lens

I have attached ALM code, as well as the beam profile image. Note that the profile takes zero to be the location of the NPRO waist.

fiberTestingCouplingDesign.png

Next Steps

 

After this setup is assembled, and light is coupled into the fibers, we will use it to run various tests to the fiber, for further use in FOL. First of all, we wish to measure the coupling efficiency, which is the purpose of the powermeter in the above schematic. We will measure optical power before and after the fibers, hoping for at least ~%60 coupling. Next is the polarization extinction ratio measurement, for which we will control the input polarization to the fibers, and then measure what proportion of that polarization remains at the output of the fiber. 

Attachment 3: fiberTesting.zip  19 kB
ELOG V3.1.3-